
The Design and Implementation of CalmRISC32 Floating Point Unit
Cheol-Ho Jeong*, Woo-Chan Park*, Sang-Woo Kim** and Tack-Don Han*

* Department of Computer Science, Yonsei University, Seoul 120-749 Korea
**MCU Team, System LSI Division, Samsung Electronics Co., Yong-In, Korea

*E-mail: chieonehkum e.vonsei.ac.kr

Abstract
The CalmRISC32 FPU is RISC style coprocessor for en-

bedded system. It supports IEEE-754 standard single preci-
sion addition/subtraction, floating-point multiplication,
.floating-point division, format conversion, comparison,
rounding, load/store, and etc. It also supports four rounding
modes, and precise exception. It can execute and complete
instructions out of order if some constraint is resolved - data
dependency, resource conflict, and exception prediction.
Standard cell base design technique is used to save design
time and cost. First prototype is running at about 7OMhz
with worst-case delay in gate level simulation.

I. INTRODUCTION
Currently, embedded system is hailed by major semiconduc-

tor and mobile device manufacturer. They need simple, light,
and low power micro-controller, not high performance micm-
processor. Obviously current design goal is low-power and
higher performance within given constraints. And both on-
chip and off-chip configuration of peripheral device must be
possible for various market demands.

CalmRISC32 FPU is design for embedded system based on
above characteristics. It is RISC type coprocessor, and on-
chip or off-chip configuration is possible with host processor.
It supports IEEE-754 single precision data type, four rounding
mode, and precise exception. It has five separate pipelines,
and optimized for fast floating-point addition/subtraction,
floating-point multiplication, and floating-point comparison.
Also, coprocessor instructions can be executed simultane-
ously in all pipelines and can be completed out of order.

In general, floating-point operation latencies are varied by
arithmetic instructions that executed @]. Therefore, it is gen-
eral to adjust all operation latencies to longest pipeline latency.
But, In CalmRISC32 FPU, out of order execution and comple-
tion control scheme is designed to achieve high performance.
Scoreboarding and tomasulro's algorithm can be a candidate
to support out of order execution/completion [2]. But, design
cost and complexity of these techniques is too high for micro-
controller. Therefore, constraints base dynamic scheduling is
used with data dependency checking, resource conflict check-
ing, and exception prediction technique. With this technique
CalmRISC32 FPU can perform instructions out of order execu-
tion/completion. And exception prediction technique elimi-
nates special hardware unit - reorder buffer or reservation
station. All operands of arithmetic instructions are checked for
exception in the first stage of pipeline, and if exception can be
happen, then coprocessor executes instruction in order to
handle exceptional condition properly, otherwise coprocessor
performs instruction out of order.

CalmRISC32 FPU is implemented with standardcell Ebrary

to save implementation time and cost. It supports floating-
point additionhubtraction, floating-point multiplication, float-
ing-point division, format conversion, comparison, rounding,
load/store, and etc. hard-macro block is used for large conven-
tional block--fraction multiplier, adder, and subtractor. And it
reduces design time and verification effort.
The remainder of this paper organized as follows. Section 2

shows the architecture of CalmRISC43 FPU and section 3 de-
scribes the coprocessor interface to host processor. Design
methods and implementation scheme is explained in section 4.
Finally, section 5 describes conclusions.

II. CalmRISC32 FPU ARCHITECTURE
The CalmRISC32 FPU is a 32bit RISC type co-processor that

executes floating-point operation with the support of Calm-
RISC32 microprocessor. It was designed for micro-controller
that is used for embedded system. And, It can be applied to
high-speed floating-point number calculation, signal process-
ing and 3D graphics application with a multiple FPU. It is c o m
posed of hardware floating-point ALU (Arithmetic and Logic
Unit), floating-point multiplier, and floating-point divider. And,
It has independent instruction decoder, load/store unit, regis-
ter file and co-processor interface unit. Therefore, CalmRISC32
FPU can be included, or excluded along with application do-
main. It can execute several instructions simultaneously within
some constraint and complete instruction out of order if arith-
metic exception is not genemted by the instruction.

Date lnp"t 8Y.D.t. 0 " t D " t 8

Data Transfer un

Status/Control Real

Fig. 1. Block diagram of CalmRISC32 FPU

CalmRISC32 FPU supports 32bit single precision floating-
point addition, subtraction, multiplication, division, compari-
son, type conversion and rounding operations. And, IEEE-754
standard four rounding mode (Round to zero, round to nearest,
and round to negative/positive infinity) and exception is sup-
ported. It has greatly reduced interrupt recovery mechanism

0-7803 -6470 -8/OO/ $10.00 0 2000 IEEE 327

with the simple co-processor interface and exception predic-
tion technique. And it has 16 ? 32bit register file, one
status/control register, and one exception register. A rounding
mode, exception type, and comparison result are stored into
these special registers.

Data transfer from/to host processor (CalmRISC32) is made
by data transfer unit under the control of co-processor inter-
face unit. To reduce design complexity of co-processor, it has
not instruction fetch unit and memory address generation unit.
And, co-processor cannot independently access memory.
Therefore, host processor takes responsibility of instruction
fetch and address generation and data preparation for memory
read or write operation.

Instruction is first fetched and pre-decoded by host proces-
sor. If pre-decoded instruction is co-processor instruction, the
instruction code is transferred directly to co-processor with
several control signals. And, then co-processor decoded the
received instruction and executed appropriate operation. For
loadktore operation, host processor continues instruction
execution for memory address generation and data that stored.
CO-processor only has responsibility of data preparation and
data transferto host processor through the data bus.

Generally, the most frequent floating-point operation is
floating-point additionhbtraction. And the floating-point
multiplication is in the second place. Therefore, design effort
is focused on the fast floating-point additionhubtraction unit
and floating-point multiplication unit. For the fist program
execution dedicated floating-point comparison unit is included
in the floating-point ALU and it can complete floating-point
comparison operation with in one clock cycle. And miscella-
neous operations (register move, absolute, negation and etc.)
are executed in the separate pipeline unit with one clock cycle
latency.

A. FPU Execution Pipeline
Figure 2 shows pipeline diagram of CalmRISC32 FPU. Calm

RISC32 FPU has five separate pipeline paths - floating-point
ALU pipeline (FALU), floating-point multiplication pipeline
(FMUL), floating-point division pipeline (FDIV), load/store
pipeline (FLDST), and miscellaneous pipeline (Mix.). As
shown in figure 2, those pipelines have different operation
latencies, and all pipeline except FDIV are h l ly pipelines. And
first stage of FDIV pipeline has iterative path, which has 15-
latencies. With the in-order issue and in-order completion con-
trol scheme pipeline resource is greatly wasted because a-
other instruction cannot be issued before current instruction
is being executed. To full use of these pipelines, sinple dy-
namic instruction scheduling is used. This dynamic schedul-
ing can be archived by resource conflict checking in the write-
back stage (FW), data dependency checking in the decode
stage (FD), and exception prediction in the first stage of the
each arithmetic pipelines (FDIV, FMUL, and FALU). Therefore,
the host processor can continues instruction issues to co-
processor until data dependency and resource conflict is
founded. Issued instructions are executed simultaneously in
those pipelines and complete operation out of order if e-
source conflict is resolved and other pipeline does not gener-
ate exception prediction signal. If eception prediction signal
is generated, the host processor stops instruction issues until
the instruction that generates exception prediction signal fin-

The Second IEEE Asia Pacific Conference on ASICs / Aug 28-30, 2000

328

ishes its execution. If exception prediction is false, host proc-
essor continues the program execution.

In the FW stage, if two or more write-back data is available,
only one write-back data is selected from these five pipelines
with the predefined priority and generated pipeline stall signal
to other pipeline. And in the next clock cycle the other write-
back data is advanced to the FW stages.

CO-processor catches pipeline stall conditions in the case
of data dependency and resource conflict. If stall conditions
are founded, it generates appropriate control signals to stall
host processor and stop instruction issues.

B. Floating-point ALU
Floating-point ALU pipeline is composed of floating-point

addition/subtraction unit, comparison unit and exception pre-
diction unit. It can handles floating-point addition, subtraction,
type conversion, rounding, comparison operation. Generally
floating-point addition/subtraction takes four processing
steps - alignment, fraction additiodsubtraction, normalization,
and rounding. It needs addition fraction adder for rounding
and increase processing time and area. It causes re-
normalization step by the overflow in rounding processing. In
order to reduce that renormalization overhead, parallel-
rounding algorithms is implemented [4]. With this algorithm
fraction additionhbtraction and rounding is executed simu I-
taneously in the second pipeline stage. Also it supports IEEE
standard four rounding mode. Therefore, It can perform float-
ing-point additionhbtraction and the other ALU operations
within three clock cycles - rounding operation and format
conversion operation (Integer to floating-point or floating-
point to integer). In addition, it does not need renormalization
step because rounding takes place before normalization, and
additional adder is eliminated.

I

Fig. 2. Pipeline diagram of CalmRISC32 FPU

For the exception prediction the exponents of two operands
are examined in the first stage. Exponent addition or subtrac-
tion is performed according to the ALU operation, and invalid
number checking of input operands is executed. If one of input
operands is invalid format, and calculation of the two cper-
ands may cause exception, ALU asserts exception prediction
signal to prevent further instruction issue by host processor.
The last ALU pipeline stage ascertains the truth of arithmetic
exception by the status/control register setting values to serve
an exception handing. And setting of status/control register
value to all zero can ignore the exception generated by the
arithmetic pipeline.

C. Floating-Point MUL
Floating-point MUL pipeline has two stages. In the first

stage floating-point fraction multiplication and addition of
partial production is performed. And in the next stage, fraction
rounding and normalization is executed. In order to save de-
sign time and effort, integer multiplier hard macro in target
library is applied and it was designed with the conventional
floating-point multiplication steps [5] . In addition, in the first
stage the exponents of two operands are examined for excep-
tion prediction. If one of the two operand’s exponent and frac-
tion is invalid number format (Not a Number, Infinity number
or De-normalized number), or the addition of the two expo-
nents may cause overflow or underflow exception, the excep-
tion prediction signal is generated to stop issuing instruction
according to status/control register setting. The exact excep-
tion signal is generated in the last stage of FMUL pipeline to
process exception handling.
D. Floating-Point DIV and Load/Store
Floating-point DIV pipeline has iterative first stage and non-

iterative the other stages. In the first stage, radix4 SRT divi-
sion algorithm is used for implementation [6], PI. In the sec-
ond stage quotient addition is performed, and rounding and
normalization step is executed in the last stage. Also the expo-
nents of two operands are examined for exception prediction in
the first stage. If one of the two operand’s exponent and frac-
tion is invalid number or zero divisor (Division by Zero), or the
subtraction of the two exponents may cause overflow, under-
flow exception, the exception prediction signal is generated to
stop issuing instruction. In the last stage of FDIV pipeline
exact exception signal is generated according to status/control
register setting to process exception handling.

Load/Store pipeline (FLDST) has two stages comply with
memory access stage (MEM) in host processor. In the first
stage of FLDST, there is any operation, but in the next stage
data read or write operation is executed thought the data input
bus or output bus. For multiple cycle load/store instruction or
pipeline control signal is used to stall co-processor. In the next
section explains host and co-processor interface mechanism.

Misc. pipeline can executed register move, absolute value,
negation value and constant (0.0 or 1 .O) load operation.

111. COPROCESSOR INTERFACE
To deduce the design complexity and effort of coprocessor

exception recovery mechanism and memory access unit is a-
cluded. But, a simple host - coprocessor interface unit and
some constraints, can support these services. That is, instruc-
tion stream is scheduled with a host processor and interface
signals. Instructions are issued in order by host processor,
but instruction completions can be done out of order by the
operation latency. Coprocessor and core processor need to be
synchronized on some cases - instruction issue may not be
allowed since coprocessor suffer from stalls and can not get
more instruction from core processor, core processor is stalled
and can not provide data for coprocessor data transfer n-
struction, etc. Therefore, co-processor and host processor
have to synchronize with each other special control signals -
STXEN, STMEN, STWEN, COPXEN, COPMEN, and COP-
WEN. These signals active in low state, “ST” mean host
processor status, and “COP’ means co-processor status. And,
“ X , “M” and “W” are stand for execute stage, memory stage,

“M” and “W” are stand for execute stage, memory stage, and
write-back stage, respectively. The last letters “EN” stand for
enable. That is, if STMEN is high, it means that the nstruc-
tions in the host processor can advanced to next memory
stage. If it goes to low state, the instruction in the host proc-
essor can not advanced to the next stage. And if COPXEN is
in the low state, it means that some pipeline stall conditions
(data &pendency, resource conflict, and pipeline full) are
happened, therefore, instruction issues must be stop until
COPXEN goes to high. Like this, instruction issue control is
archived with these control signals.

In the coprocessor decode stage decodes instructions from
host processor and checks dependency. COPXEN sgnals
generated to stop instruction issuing if data dependency hap-
pens. As soon as data dependency is resolved, COPXEN s&-
nal goes to high.

fTWEN t fTXEN + (STMEN 4

Fig. 3. Host and co-processor interface signals

Two resource conflicts can be happens in the coprocessor.
First, resource conflict can happens if two or more pipeline
attempts to advance to the coprocessor write-back stage, be-
cause only one write-back data can advance to write-back
stage. And the other instructions in the pipelines must wait
until next clock cycles. Write-back data selection is scheduled
with the priority. If one pipeline is full of instructions due to
low priority, no more instructions that use the pipeline can be
executed. But, the instruction that uses vacant pipeline can
execute if data dependency is not happen. Write-back conflict
is resolved by the priority scheduling, and pipeline resource
conflict is controlled by the COPXEN signals for instruction
scheduling in the host processor.

For data loadstore operation, the loadstore pipeline is de-
sign to fit with a host processor pipeline. Because coproces-
sor cannot access memory, host processor has memory write
data to global data bus so that coprocessor reads that data
when coprocessor data load operation is executed. And for
coprocessor data store operation host processor generates
memory address and coprocessor writes data to global bus so
as to be stored. In general, one clock cycle load/store opera-
tion, no control signals are generated by the host processor.
But, in the multiple cycle loadktore operation, coprocessor
must wait for the end of memory access and data preparation
in host processor. In that case one or more control signals
from host processor goes low to stall a co-processor
loadstore pipeline. But the other pipeline in the coprocessor
can execute another instruction if data dependency, resource
conflict and exception prediction is not happen.

329

The Second IEEE Asia Pacific Conference on ASICs / Aug 28-30, 2000

For the support interrupt recovery exception prediction
technique is used. Actually, CalmRISC32 FPU has no special
exception recovery unit but every instruction is predicted for
arithmtic exception and no further instruction issuing if e+
ception prediction signal is active. And un-active exception
prediction signal must guarantee that arithmetic exception
never happens on the execution of the instruction. This tech-
nique has an advantage in area and design cost because spe-
cial hardware unit (reorder buffer) is not needed.

In the first stage of arithmetic pipeline every instruction is
checked for the possibility of exception. If the instruction can
make an exception, exception prediction signal is generated
and these signals make host processor stall with COPMEN
and COPXEN signals. In the last stage of arithmtic pipeline
true exception is generated, if exception is not happen, host
processor continues instruction issuing, or happens, host
processor jump to the coprocessor exception handling routine.

IV. IMPLEMENTATION
CalmRISC32 FPU is design with 0.25?m standard-cell library

because design time is very important in embedded system
market. CalmRISC32 FPU support 32bit single precision float-
ing-point arithmetic instruction - floating-point addi-
tionlsubtraction (FADD/FSUB), floating-point multiplication
(FMUL), floating-point division (FDIV), format conversion
(FTOI, ITOF), comparison (FCMP), rounding (FRND),
load/store (CLD), and etc. and IEEE-754 standard rounding
mode and exception signals are supported.

For fast floating-point addition/subtraction unit, parallel
rounding algorithm is implemented. It can eliminate FALU
pipeline stage and delivers fast floating-point ALU operation
results. And to save design complexity of floating-point multi-
plier, multiplier hard-macro block is used, and the other adder
and subtractor hard-macro blocks are used for another data-
path design. These hard-macro blocks can save design and
simulation time. In the design of floating-point divider special
control block is design for the first division step because the
first stage of divider has iterative property. With a simple co-
processor interface and load/store unit hardware des ign cost
and effort is reduced.

Table I . Instruction latencies

First, Behavioral HDL model is implemented and verified
with simple test vector. All arithmetic data-path is verified by
the comparison of data-path calculation result and C program
result. And then, the synopsys’ s design analyzer generates
Gate level model. Next, Timing verification with Samsung’s in
house tool - Cubicware is done. First prototype is running at

about 70Mhz with worst-case delay in gate level simulation.
The further gate level model optimization is needed for the
best result.

Table.1 shows supported instruction latencies in C a b
RISC32 FPU. Floating-point addition/subtraction, floating-
point multiplication pipelines are optimized for fast program
execution. And for comparison operation, dedicated compan-
son unit is design and it delivers one-clock cycles latency.
The latency of floating-point division takes longer clock cy-
cles than that of the other operation. But, this processor can
execute another instructions on the middle of instruction
execution. It can provide the improvement of program
execution time, program optimization, and the improvement of
overall performance.

V. CONCLUSIONS
The CalmRISC32 FPU is RISC type coprocessor. It is config-

ured with CalmRISC32 micro controller. It supports IEEE-754
standard single precision floating - point additionhbtraction,
multiplication, division, format conversion, comparison,
rounding, loadstore, and etc. It also supports four rounding
modes, and exception signals. It can execute and complete
instructions out of order if some constraint is resolved - data
dependency, resource conflict, and exception prediction. It
has simple co-processor interface, and has high performance
due to constraint base dynamic scheduling. Standard cell base
design technique is used to curtail design time and cost.

Acknowledgement
This research was supported by Samsung Electronics Co.,

Ltd. (1999)

REFERENCES
Israel Koren, “Computer Arithmetic Algorithms,” John Wiley & Sons, I993
D. Goldberg “Appendix A, Computer Arithmetic,” in J.L.
Hennessy and D.A. Patterson, Computer Architecture: A
quantitative Approach, Morgan Kaufman Publisher, San
Francisco, 1996
Amos R. Omondi, “Computer Arithmetic Systems: Algo-
rithms, Architecture and Implementation,” Prentice Hall,
1994
Woo-Chan Park, Shi-Wha Lee, Oh-Young Kwon and
Tack-Don Han, “Floating point AddedSubtractor Per-
forming IEEE Rounding and AdditiodSubtraction in Par-
allel,’’ IEICE Trans. Inf.&Syst., Vol.E79-D, No.4, Apr. 1996
Woo-Chan Park, Cheol-ho Jeong, Jin-ki Yang and Tack-
don Han, “design of floating point multiplier performing
the IEEE rounding and addition in parallel,” Journal of the
Korean institute of telemetics and electronics, Vol. 34,

D. E. Atkins, “Higher-Radix Division Using Estimates of
the divisor and partial Remainder,” IEEE Transaction on
computers, 17, No 10, pp.925-934, Oct. 1968
Milos D. Ercegovac and Tomas Lang, Division and
Square Root: Digit-Recurrence Algorithms and Implemen-
tations, Kluwer Academic Press, 1994

NO. 1 1, pp. 897-904, NOV. 1997

330

